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Abstract
A theoretical model has been developed to calculate the superparamagnetic
relaxation rate for small magnetically ordered particles of uniaxial symmetry
having size 50–120 Å. On a microscopic level the relaxation process involves
an exchange of energy between magnon and phonon sub-systems via magnon–
phonon scattering induced by dynamic exchange. The model has been applied
to ultra-fine iron compounds and the calculated superparamagnetic relaxation
rates at low temperatures are usually consistent with those which are frequently
observed by Mossbauer spectroscopy. One finds that the relaxation rate
increases with temperature in a complicated manner besides its dependence
on the number of magnetic ions in the particle.

1. Introduction

The Mossbauer spectra of small magnetic particles of α-Fe2O3 [1], Fe3O4 [2], ferrihydrite [3],
ferritins [4] etc at low temperatures often show the presence of magnetic relaxation which is
strongly dependent on temperature and particle size. Such particles, which consist of a single
magnetic domain, are usually known as superparamagnets and the thermal fluctuation of their
magnetization as superparamagnetic relaxation. The shape of the magnetic hyperfine spectra
depends upon the rate of fluctuation (i.e. the relaxation rate) of the magnetization vector along
possible directions. In 57Fe Mossbauer experiments the effect of magnetic relaxation on spectra
can be observed only when the relaxation time (which is the inverse of the relaxation rate) is
comparable to the lifetime of the nuclear decay and accordingly the magnetic relaxation rates
which affect the lineshape fall within the window 107–109 s−1. For relaxation rates below
the lower limit one usually observes a sharp magnetic sextet and for rates above the upper
limit the magnetic interaction is washed out. These small particles fall within the family of
‘nano-particles’ with dimensions of about 50–150 Å only and their study through different
physical techniques has assumed importance in recent years, and therefore it is desirable to
examine the interactions which produce magnetic relaxation and this might prove helpful in
other areas as well.
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In the standard theory of superparamagnetic relaxation for particles with uniaxial
symmetry, the magnetization vector randomly jumps between two directions (θ = 0, π)
corresponding to the energy minima of the system, where the energy of the particle is
conveniently expressed as [5, 6]

E = −K V cos2 θ − H MS cos θ (1)

where K = anisotropy energy per unit volume, V = volume of the particle, MS = net
magnetization of the particle, θ = angle between the magnetization vector and the anisotropy
axis and H = magnetic field along the anisotropy axis. The theories given by Brown [5] and
Aharoni [7] treat the problem basically as flip–flops between two directions (or energy states
for θ = 0, π) separated by the anisotropy potential barrier and the relaxation rate is given as

R = R0 exp(−K V/kB T ) (2)

where the pre-exponential factor R0 is taken to be of the order of 1010–1011 s−1. Quite often
the same expression is written in terms of relaxation time (τ ) as

τ = τ0 exp(K V/kB T ) (3)

where the pre-exponential factor τ0 may be of the order of 10−10–10−11 s. It is relevant to
mention that for small magnetic particles or micromagnets the anisotropy energy basically
arises from ‘exchange anisotropy’ and ‘shape anisotropy’. The exchange anisotropy is an
interfacial effect between two magnetic subsystems specially where the interaction is between
an antiferromagnetic and a ferromagnetic material, whereas the shape anisotropy is related to
surface effects [8].

In an earlier paper by Jones and Srivastava [9] a many-state relaxation model, where all
possible orientations of MS are included, was considered using the stochastic theory of Blume
and Tjon [10] and the expression for the Mossbauer line shape function was derived. In a
special case the many-state relaxation model reduces to Brown’s two level picture [5]. The
basic limitations of the existing theories is the absence of any description of the microscopic
process which is responsible for causing the superparamagnetic relaxation and this point was
also emphasized earlier [9, 11, 12]. Until now the interaction between the particle and its
environment has been expressed in terms of a rapidly fluctuating random magnetic field which
is inadequate from a microscopic point of view. Even classically it will be difficult to quantify
such random magnetic fields and their temperature profile.

It is therefore desirable to develop the microscopic interaction Hamiltonian (or the
perturbation potential) which causes the superparamagnetic relaxation so that its rate can
be easily calculated, and naturally such an interaction should take into account the dynamics
of spin fluctuations and lattice vibrations. This will simply lead to a coupling between spin
waves and lattice waves or in other words a coupling between magnons and phonons for
the given particle. Akhiezer [13] has shown that the interaction between spin waves and
lattice vibrations is quite important for the relaxation process within magnetic crystals at low
temperatures. This interaction, commonly known as magnon–phonon interaction, represents
the thermal modulation of the Heisenberg exchange interaction between nearest neighbours by
lattice vibrations and it causes the exchange (or flow) of energy between magnon and phonon
sub-systems. Such an exchange of energy produces a change in the spin-state of the magnetic
crystal and hence gives rise to magnetic relaxation. The method developed by Akhiezer [13]
and used by Sinha and Upadhyaya [14] for iron compounds will be followed with necessary
approximations relevant to the system.
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2. Static crystal field scheme

In a static crystal with no lattice vibrations, we consider one localized 3d electron of a magnetic
ion. The Hamiltonian for the i th electron is given by

H = H0 + V0 + He + Ha + Hz (4)

where H0 = p2
i /2m + U(ri − R0

m) = free ion Hamiltonian, V0 = ∑
n �=m U(ri − R0

n) = crystal
field potential (usual for iron group ions), He = exchange interaction between the electrons of
the nearest neighbours, Ha = anisotropy interaction and Hz = Zeeman interaction.

In the above description ri is the position coordinate of the i th electron belonging to the
mth ion at R0

m and R0
n is the position of the nth nearest neighbour ion. In the static crystal field

potential the orbital wavefunctions of an electron are solutions of the equation given by

(H0 + V0)�α = Eα�α (5)

where the label α represents a particular orbital state. The five orbital wavefunctions of a 3d
electron in an octahedral or cubic crystal field are well known [16]. In the case of an Fe(3+)
ion, each of the five 3d-orbitals is occupied by one electron and consequently it behaves like
a 6S-state ion.

The exchange integral between two electrons of the nearest neighbour ions is given by

Jo(R0
mn) = 〈�α,m(r1)�α,n(r2)|(e2/r12)|�α,n(r1)�α,m(r2)〉 (6)

where r12 = r1 − r2 and R0
mn = R0

n − R0
m . The exchange interaction is finally given by

He = −2
∑
n>m

Jo(R0
mn)Sm Sn (7)

where Sm and Sn are the net electronic spins at ions m and n, and the summation extends
over all the nearest neighbours. This is the effective exchange interaction which gives rise to
magnetic ordering.

3. Dynamic crystal scheme

The lattice vibrations produce an oscillating crystal field potential due to relative displacements
of the nearest neighbours and the first order term (V ′) is given by

V ′ =
∑

m

(∂V/∂ Rmn)0 dRmn (8)

where Rmn = Rm − Rn = R0
mn + dRmn . This oscillating field can mix the excited orbital

states into the ground orbital state of the magnetic ion, which in turn modulates the exchange
interaction. The modified orbital wavefunction can be given by [14, 15]

�α = φα +
∑

β

(〈φα|V ′|φβ〉)/(Eα − Eβ) (9)

where Eα and Eβ are the energies of the states φα and φβ . In the present case φα is one of the
appropriate 3d orbitals and φβ will be an empty 4p orbital of the Fe(3+) ion. For this modified
wavefunction the exchange integral becomes equal to

J (Rmn) = J0(R0
mn) + J ′(Rmn) dRmn (10)

where J ′(Rmn) = 4
∑〈�α,m(r1)�α,n(r2)|(e2/r12)|�α,n(r1)�β,m(r2)〉

〈�β,m(r2)|(∂V/∂ Rmn)|�α,m(r2)〉/(Eα − Eβ). (11)
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The first term of the expression (9) represents the usual exchange integral for the static crystal
and the second term arises due to lattice vibrations [14, 15]. Thus the modulated exchange
interaction can be expressed as

H ′
e = −2

∑
n>m

[J ′(Rmn) dRmn]Sm Sn . (12)

This is the interaction which is responsible for the coupling between electronic spins and lattice
vibrations in a magnetically ordered crystal. The parameter J ′ may be regarded as the gradient
of J with respect to separation between magnetic ions (i.e. J ′(Rmn) = d J/dRmn).

4. Magnon–phonon interaction

The magnon–phonon interaction Hamiltonian is easily obtained from (11) when the ionic
displacements are expressed in terms of phonon operators and the spin operators are expressed
in terms of magnon operators, that is, when the quantum mechanical representations are
introduced. Using Holstein–Primakoff formalism [17, 18] and retaining only those terms
which are linear and bilinear in magnon variables one may write

Sm
+ = (2S/N)1/2

∑
q

exp(−iq R0
m)bq, Sm

− = (2S/N)1/2
∑

q

exp(−iq R0
m)b∗

q,

and

Sz = S − (1/N)
∑
q,q ′

exp[i(q ′ − q)R0
m]b∗

q ′bq (13)

where bq and b∗
q are the magnon annihilation and creation operators, (q, q ′) are the magnon

wavevectors, S is the spin of each ion and N is the total number of magnetic ions. Similar
transformations can be written for the spin of the nth ion bearing in mind that its position
coordinate is R0

n . Using the above transformations one obtains that

Sm Sn = S2 + (S/N)
∑
q,q ′

[exp(−iqa) − 1][exp(iq ′a) − 1]b∗
q ′bq (14)

where R0
n − R0

m = a is the separation between nearest neighbours (or lattice constant) and the
mth ion is supposed to be at the origin. For the whole crystal the above expression is summed
over the possible number of magnetic interactions Nz/2 where z is the number of nearest
neighbours in the given structure and N is the total number of magnetic ions.

The lattice waves are included by expressing the ionic displacements in terms of phonon
annihilation and creation operators. A small displacement δRm of the mth ion is given by

δRm = (1/N)1/2
∑

k

(h̄/2Mωk)
1/2i(a∗

k − a−k) exp(ik R0
m) (15)

where ak and a∗
k are phonon annihilation and creation operators respectively, k = phonon

wavevector, ωk = frequency of phonon with wavevector k and M = mass of the ion. A similar
expression can be given for the displacement δRn of the nth ion. Thus one obtains that

dRmn = (1/N)1/2
∑

k

(h̄/2Mωk)
1/2i(a∗

k − a−k)[exp(ika) − 1] (16)

where dRmn = δRn − δRm , and again the mth ion is supposed to be at the origin R0
m = 0. The

Hamiltonian for the magnon–phonon interaction (Hmp) is obtained by using (13) and (15) in
the expression (11) as

Hmp = −i(2J ′S)
∑

q,q ′,k
(h̄/2N Mωk )

1/2[exp(ika) − 1]

× [exp(−iqa) − 1][exp(iq ′a) − 1]b∗
q ′bq(a

∗
k − a−k) (17)
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where the terms containing phonon operators only have been dropped (because these do not
represent magnon–phononcoupling) and (14) has been multiplied by N to take into account the
whole crystal. These interaction terms represent two-magnon one-phonon inelastic scattering
processes. They indicate that a magnon of wavevector q is annihilated and another magnon
of wavevector q ′ is created with the emission (or absorption) of one phonon with wavevector
k (or −k). The scattering of higher orders, for example those involving two-magnon two-
phonon processes, have been ignored [13, 19]. The expression (17) differs from that used
earlier [13, 14] (though the methodology is very similar) as in the present formulation the
general form of the exchange term which contains both q and q ′ in (13) has been used. Now
for a pair of nearest neighbours under the long wavelength approximation one obtains that

[exp(ika) − 1][exp(−iqa) − 1][exp(iq ′a) − 1] = ikqq ′a3. (18)

Thus the expression (17) for the magnon–phonon interaction Hamiltonian may be written as

Hmp =
∑
q,k

C(q, k)[b∗
q−kbq(a

∗
k − a−k)] (19)

where

C(q, k) = (2S J ′a3)(h̄/2N Mωk )
1/2q(q − k)k. (20)

5. Transition probability

The eigenstates of the system can be represented in terms of the product of magnon and phonon
occupation numbers. Thus the initial and final states may be written as �i = |nq , nq−k, Nk 〉
with energy = Ei and � f = |n′

q , n′
q−k , N ′

k 〉 with energy = E f , where n and N refer to
magnon and phonon occupation numbers given by the respective Bose–Einstein distributions.
The transition probability (W ) per unit time is given by the standard expression in quantum
mechanics as

W = (2π/h̄)|〈�i |Hmp|� f 〉|2δ(Ei − E f ). (21)

It can be seen that during these transitions the total number of magnons remains unchanged
but the number of phonons changes. The probability (W ) in fact gives the rate of change of
the number of phonons. Using the properties of magnon and phonon operators and taking the
difference of the transition probabilities in two directions, one obtains that

〈Ṅk 〉 = (2π/h̄)
∑

q

|C(q, k)|2[(nq−k + 1)nq(Nk + 1) − nq−k(nq + 1)Nk]δ(Eq−k − Eq + Ek)

(22)

where Eq−k and Eq are the energies of the magnons with wavevectors q −k and q respectively,
and Ek is the energy of the phonons with wavevector k. The delta function ensures energy
conservation during transition. The rate of transfer of energy between magnon and phonon
sub-systems is given by

Q̇ =
∑

k

h̄ωk〈Ṅk 〉. (23)

It is implied, as in [13, 14], that the magnon and phonon sub-systems have different
temperatures usually known as spin temperature (TS) and lattice temperature (T ). This means
that nq and Nk are expressed in terms of TS and T respectively. Assuming that TS − T = �T
is small, the magnon number can be expressed in terms of T [13] by the method of Taylor
series expansion, and then one may write

exp(Eq/kB TS) = exp(Eq/kB T )[1 − (Eq/kB T 2)�T ] (24)
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and a similar expression for exp(Eq−k/kB TS). Using the energy conservation relation
Eq − Eq−k = Ek = h̄ωk and replacing the summation by integration for the continuous
magnon and phonon spectra one obtains that

Q̇ = (2π/h̄)

∫ ∫
dq dk |C(q, k)|2(h̄ωk)

2(�T/kB T 2)

× exp(Eq/kB T )g(k)g(q)δ(Eq − Eq−k − Ek)

[exp(Eq−k/kB T ) − 1][exp(Eq/kB T ) − 1][exp(Ek/kB T ) − 1]
(25)

where T = TS has been used for the magnon terms in the denominator, g(k) = density of
phonon states and g(q) = density of magnon states. For example, the magnon occupation
number (nq + 1) becomes

nq + 1 = exp(Eq/kB TS)/[exp(Eq/kB TS) − 1]

= exp(Eq/kB T )[1 − Eq(�T/kB T 2)]/[exp(Eq/kB T ) − 1]. (26)

For the Debye type spectra one may use

g(k) dk = 3(Na3/2π2)k2 dk, and g(q) dq = (Na3/2π2)q2 dq (27)

where Na3 is the volume (V ) of the crystal and the factor of three in g(k) accounts for three
directions of polarization. As per thermodynamics the change of energy and the temperature
of the lattice and spin sub-systems are related by the following equations:

dT/dt = Q̇/Cp, and dTS/dt = −Q̇/Cm (28)

where T and TS are the lattice and spin temperatures, and Cp and Cm are the specific heats of
the phonon and magnon sub-systems. One may use the relation d(T − TS)/dt = �T/δt =
�T/τmp, which simply means that the transfer of energy within the sub-systems having
temperature difference �T takes place within the time interval δt or the relaxation time τmp.
Then from (27) one immediately obtains that

1/τmp = [(1/Cm) + (1/Cp)](Q̇/�T ). (29)

It indicates that the magnon–phonon relaxation rate (1/τmp) depends both on the lattice
dynamic and magnetic properties of the crystal.

6. Superparamagnetic particles

The discussion presented above applies to any magnetic system in general. The difference lies
in the magnon energy spectrum for the given system. Here we consider a ferromagnetically
ordered superparamagnetic particle. The energy of magnons will consist of the exchange,
anisotropy and Zeeman terms. The magnon energy (Es) due to ferromagnetic excitations (or
spin waves) is given by the standard relation [18]

Es =
∑

q

(2J0Sq2a2)b∗
qbq =

∑
q

(kB TC q2a2)b∗
qbq (30)

where in terms of Curie temperature (θC) the exchange constant J0 = 3kBθC/2zS(S + 1),
z = number of nearest neighbours [20] and for convenience we put TC = 3θC/z(S + 1). It
is seen that TC = θC for z = 2, S = 1/2 and the completely ordered state (ground state
with no magnons) is considered to have zero energy. For Fe(3+) in octahedral coordination
(S = 5/2, z = 6) one gets TC = θC/7.

Now it is desirable to express the energy of the superparamagnetic particle given by
expression (1) in terms of magnon operators, which can be done by writing the spin operators
in terms of magnon variables through the following representations [18]:

S2 = N S(N S + 1) ≈ (N S)2 and SZ = N S −
∑

q

b∗
qbq,
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where S = N S, and then one may write

cos2 θ = (SZ/S)2 ≈ 1 − (2/N S)
∑

q

b∗
qbq (31)

neglecting the higher order term (b∗
qbq)

2 which is small at low temperatures. The anisotropy
and Zeeman energy terms of the particle given in expression (1) are then reduced to the form

E = −A0 + (2K V/N S + gβe H )
∑

q

b∗
qbq (32)

where A0 = K V + gβe HNS, which is the anisotropy and Zeeman energy of all the magnetic
ions. The completely ordered magnetic state with no magnon (or no spin wave) has the energy
−A0, which is the depth of the anisotropy potential well and its value is equal to −K V when
no magnetic field is applied. Similarly one may write B0 = 2K V/N S + gβe H , which is the
anisotropy and Zeeman energy of a single magnetic ion only. Thus the total energy (Em) of
the magnon gas (or magnon sub-system) for a superparamagnetic particle is given by

Em =
∑

q

Eqb∗
qbq = −A0 +

∑
q

[B0 + kB TC q2a2]b∗
qbq . (33)

This is an important expression in the sense that it indicates how the dimension of the
particle and its potential/anisotropy energy comes into the magnon dispersion relation. The
energy of the phonons (E p) is also given by the standard relation [20] as

E p =
∑

k

Eka∗ak =
∑

k

(kB TDka)a∗ak (34)

where TD = θD/(6π2)1/3 ≈ θD/4, and θD is the Debye temperature of the crystal.

7. Evaluation of Q̇

The expression for Q̇ is to be integrated after inserting the values of C(k, q), g(k), g(q) and
using h̄ωk = kB TDka for the phonon energy in expression (25) which gives

Q̇ = (3Nh̄/4Mπ3)(2J ′S)2(TD�T/T 2)

∫ ∫
dq dk q4(q − k)2k5a13

× f (Eq) f (Eq−k) f (Ek) exp(Eq/kB T )δ(Eq − Eq−k − Ek) (35)

where f (E) = [exp(E/kB T ) − 1]−1 represents the Bose–Einstein distribution for magnons
and phonons of respective energies Eq , Eq−k and Ek . Using the dimensionless variables
x = ka and y = qa the above integral reduces to∫ ∫

dy dx y4(y − x)2x5 f (Eq) f (Eq−k) f (Ek) exp(Eq/kB T )δ(Eq − Eq−k − Ek). (36)

The delta function is first written in terms of the new variables using Eq = kB TC y2,
Eq−k = kB TC(y − x)2 and Ek = kB TD x , which gives

δ(Eq − Eq−k − Ek) = δ[2kBTC x((y − x/2) − TD/2TC)] = (1/2kB TC x)δ(y − (x + α)/2),

(37)

where α = TD/TC . The integration over y yields a non-zero value for the condition
y = (x + α)/2 only and thus the integral reduces to

(1/27kB TC)

∫
dx x4(x + α)4(x − α)2 f (Eq) f (Eq−k) f (Ek) exp(Eq/kB T ). (38)
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This integral cannot be solved in a closed manner and therefore further approximations
especially at low temperatures will be made. At low temperatures (long wavelengths) x and y
(like k and q) will be small and therefore the following substitutions can be made:

(x + α) → α, (x − α) → −α, f (Eq−k) → f (Eq) and f (Eq) ≈ exp(−Eq/kB T ).

(39)

Then the expression (38) will contain only one exp(−Eq/kB T ) related to magnon energy
and under the condition y = (x + α)/2 → α/2 it may be expressed as

exp(−Eq/kB T ) = exp(−A) exp(−B) exp(−T 2
D/4T TC) (40)

where

B = (2K V/N S + gβe H )/kBT and A = (K V + gβe H N S)/kB T . (41)

It is obvious that B is proportional to the energy of one magnetic ion whereas A is
proportional to the energy of all magnetic ions (whole particle) and therefore the latter is much
larger than the former. As a consequence it is the term exp(−A) which always dominates over
the term exp(−B) and this will become apparent when doing quantitative calculations. Since
the term exp(−Eq/kB T ) reduces to the form (40) which does not contain the phonon variable
x , it comes out of the integral and then (38) reduces to

(1/27kB TC)(α6) exp(−T 2
D/4T TC) exp(−A) exp(−B)

∫
dx x4[exp(xTD/T ) − 1]−1. (42)

This integral on the phonon spectrum can be evaluated at low temperatures within the
limits 0 to ∞ as∫

dx x4[exp(xTD/T ) − 1]−1 = (T/TD)5
∫

dz z4[exp(z) − 1]−1 = (T/TD)5[4!ζ(5)] (43)

where the Riemann zeta function ζ(5) = 1.0369 ≈ 1. Considering all these values the double
integral is evaluated and the expression (35) is finally given as

Q̇ = (9Nh̄/64Mπ2)(2J ′S)2(T 2
D/T 7

C )(T 3)(�T/kB) exp(−T 2
D/4TC T ) exp(−A) exp(−B).

(44)

The terms exp(−A) and exp(−B) have been kept separate to indicate the role they play.
For ferromagnets K = 0 and then both these terms become unity when H = 0, which amounts
to saying that for large particles the anisotropy has negligible effect. The result (44) is a new
one and it differs from the earlier derivations [13, 14].

8. Expression for relaxation rate

In order to obtain the expression for relaxation rate (1/τmp) the values of Cm and Cp are
required. Since our aim is to calculate the specific heat of magnon gas (Cm) it is only the
temperature-dependent (i.e. q-dependent) energy of magnons that is required (i.e. constant
terms A0 and B0 are dropped) in the following standard expression [18]:

Em =
∫

dq Eq g(q)/[exp(Eq/kB T ) − 1]. (45)

Its evaluation involves �(5/2)ζ(5/2), the product of gamma and Riemann zeta functions,
whose standard values are �(5/2) = 3π1/2/4 and ζ(5/2) = 1.341 for the limits 0 to ∞. At
low temperatures and H = 0 it is quite safe to adopt the standard result given by [18]

Cm = 0.113NkB(T/θC)3/2. (46)
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The specific heat of phonons having Debye type spectrum is given by another standard relation
as [20]

Cp = (12π4 NkB/5)(T/θD)3. (47)

Using the values of Q̇, Cm and Cp in expression (29) the superparamagnetic relaxation rate
(1/τsp) for the magnon–phonon scattering process is finally given by

1/τsp = (9h̄/64Mπ2)(2J ′S)2(T 2
D/T 7

C )(T 3/k2
B) exp(−T 2

D/4TC T )

× [8.85(θC/T )3/2 + (5/12π4)(θD/T )3] exp(−A). (48)

Here the nomenclature has been slightly changed by using the notation 1/τsp for
superparamagnets in the place of the usual 1/τmp for ferromagnets. As A 	 B it is sufficient
to retain the term exp(−A) only. The above expression may be recast in the familiar form as
1/τsp = R0(T ) exp(−K V/kB T ), where

R0(T ) = (9h̄/64Mπ2)(2J ′S)2(T 2
D/T 7

C )(T 3/k2
B) exp(−T 2

D/4TC T )

× [8.85(θC/T )3/2 + (5/12π4)(θD/T )3]. (49)

It is this pre-exponential factor which has remained almost unexplored but it is the most
important component of the superparamagnetic relaxation theory. It shows that R0(T ) is
substantially temperature dependent in a complicated manner.

9. Dynamic exchange parameter (J ′)

The dynamic exchange parameter J ′(Rmn) for iron compounds may depend on the electronic
orbitals which are involved in the bonding mechanism. In the case of Fe(3+) systems it is
the 3d2

z orbital of Fe(3+) and the 2pz orbital of the oxygen ligand which provides most of the
bonding and consequently the relative displacements between these ions (O–Fe–O) along the
z direction produce most of the oscillating crystal field potential which essentially mixes the
empty 4p orbital into the 3d orbital of Fe(3+) for an odd vibration. The value of the exchange
integral J (Rmn) for iron compounds has been estimated to be of the order of 0.27 eV by Koide
et al [21] but realistically taken as 0.1 eV [14]. For ferromagnetic iron (S = 1, θC = 1040 K)
the value of J = 0.012 eV as estimated through the standard relation which connects these
quantities [20]. The iron oxides usually have a smaller Curie temperature and higher ionic
spin that might suggest a lower exchange constant. In fact for ferrimagnetic Fe3O4 the value of
exchange constant J ≈ 21 K or 2.0 × 10−3 eV only [22] and a few other Fe-based ferrimagnets
also give similar values [23]. It is therefore realistic to take J ≈ 2.0 × 10−3 eV for the group
of ultra-fine iron oxides under consideration.

The potential energy of an electron at the central ion of the collinear O–Fe–O chain may
be taken as V = (−Ze2)[(R0 − r)−1 + (R0 + r)−1], where R0 is the equilibrium separation of
neighbours from the central ion and r is the position coordinate of the electron with respect
to the central ion which has charge +Ze. This gives (dV/dR) = (dV/dr) = (4Ze2r/R3

0).
Using r ≈ 1 Å as the mean radius of a 3d electronic orbital and R0 ≈ 2.5 Å, one obtains that
dV/dr = 1.77 × 10−3 erg cm−1 which is equal to 〈3dz2|dV/dR|4pz〉 as well within an order
of magnitude [14].

The value Eα − Eβ (or E3d − E4p) for Fe-series metals lies in the range 5–10 eV but it
has been considered safe to take E3d − E4p ≈ 10 eV for iron [14] and we accept the same.
Using the above estimates one finally obtains that J ′(Rmn) = 2.12 × 10−6 erg cm−1. The
value of J ′ may differ from system to system by a significant factor and hence the above value
provides only an initial estimate. It may not be out of context to mention that for structurally
similar oxygen bridged copper compounds the estimated J ′ = 5 × 10−5 erg cm−1 [24] and so
the above estimate appears reasonable within an order of magnitude.
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10. Estimation of relaxation rates

The calculation of relaxation rates requires the knowledge of several physical parameters which
have to be estimated from different experimental data that may be most suited to the given
compounds. First comes the estimation of θD , θC and K for iron compounds/oxides. These
magnetic systems are antiferromagnetic (i.e. goethite), weakly ferromagnetic (i.e. α-Fe2O3

above the Morin transition temperature), ferrimagnetic (i.e. Fe3O4) or of uncertain magnetic
structure (i.e. ferryhydrite). Surface effects may further complicate their magnetic structure
and lead to partial spin ordering. In general each magnetic structure may lead to a different
dispersion relation of its own and produce somewhat different magnetic relaxation rate. Also,
where sub-lattices exist there may be a possibility of relaxation between the sub-lattices if the
exchange coupling is not strong, etc. These examples and considerations simply indicate the
difficulty in dealing with the problem in a quantitative manner.

For the present we assume that ultra-fine iron oxide particles are essentially
antiferromagnetic and the exchange coupling is strong. In this situation the relaxation of
the antiferromagnetic moment will be similar to that of the ferromagnetic moment in zero
applied field. For α-Fe2O3 lattice θD ∼ 700 K [25], θC ∼ 950 K [26] and for Fe3O4

lattice θD ∼ 650 K [25], θC ∼ 850 K [27]. Therefore, one may take θD ≈ 700 K and
θC ≈ 900 K as representative values for the calculation of the relaxation rates. Their lattice
constant a ≈ 5 Å for which the volume of the unit cell a3 = V/N ≈ 1.25 × 10−22 cm3 (for
simple cubic structure). For bcc and fcc structures care should be taken to correlate V and N .
For an Fe(3+) ion M = 56 × 1.66 × 10−24 gm and spin S = 5/2.

The magnetic anisotropy energy has been measured in various systems [27] including
Fe(2+) and Fe(3+) compounds like pyrrhotite (FeS to Fe6S7) and magnetite (Fe3O4). In
general the anisotropy energy is temperature dependent and its sign can also change. For
cubic magnetite the anisotropy constant K ≈ 105 erg cm−3 and for hexagonal pyrrhotite
K = 2 × 105 to 5 × 106 erg cm−3 depending upon the direction of magnetization [27].
Though these measurements have been made on bulk materials, it may not be unreasonable to
assume a similar value of anisotropy constant for small particles too if the anisotropy arises
mainly from the microscopic interactions such as spin–orbit, exchange, dipolar and crystal
field interactions [6, 27]. For very small particles the non-symmetrical shape and surface
effects can appreciably contribute to the anisotropy energy, but these may not change its order
of magnitude. For the present it is assumed that the anisotropy constant K ≈ 105 erg cm−3

and it is temperature independent. This translates into K ≈ 1.25 × 10−17 erg or ≈0.1 K per
magnetic ion. Using the above data relaxation rates have been calculated for H = 0 for varying
number of magnetic ions (N = 500, 1000, 3000, 5000 and 7000) and given in table 1. The
particle size can also be expressed in terms of its volume or in terms of its diameter (which is
more common) assuming spherical shape. For the number of magnetic ions taken above the
diameters of the particles will be 49, 62, 90, 106 and 118 Å respectively which cover the usual
range of ultra-fine particles.

11. Discussion

Several approximations have been made in the derivation of the final expression for 1/τsp

and the calculation of its values as a function of temperature and therefore it may not be
wise to make claims for its precision given the wide range of magnetic particles. Still the
calculated relaxation rates could be acceptable well within one order of magnitude. These are
particularly encouraging in the context of the Mossbabuer studies of ultra-fine particles. The
calculated values indicate that Mossbauer spectra could show the effect of magnetic relaxation
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Table 1. Relaxation rates have been calculated for J ′ = 2.12 × 10−6 erg cm−1, θD = 700 K,
θC = 900 K, S = 2.5 and K = 105 erg cm−3 and the number of magnetic ions N has been
shown at the top of each column. The parameter R0 does not depend on N and its variation with
temperature has been shown. The particle size indicates the diameter of the particle, assumed to
be of spherical shape (10 Å = 1 nm).

1/τsp (s−1)

T (K) R0 (s−1) N = 500 1000 3000 5000 7000

10 1.1 × 109 1.2 × 17 1.4 × 105 1.8 × 10−3 2.6 × 10−11 3.6 × 10−19

20 5.8 × 1010 6.1 × 109 6.3 × 108 7.4 × 104 7.9 × 100 1.0 × 10−3

30 2.8 × 1011 6.2 × 1010 1.4 × 1010 3.3 × 107 7.9 × 104 1.9 × 102

40 7.0 × 1011 2.2 × 1011 7.3 × 1010 7.8 × 108 8.5 × 106 9.2 × 104

50 1.3 × 1012 5.2 × 1011 2.1 × 1011 5.7 × 109 1.5 × 108 4.1 × 106

60 2.1 × 1012 9.8 × 1011 4.6 × 1011 2.2 × 1010 1.1 × 109 5.4 × 107

70 3.0 × 1012 1.6 × 1012 8.3 × 1011 6.2 × 1010 4.7 × 109 3.5 × 108

80 4.1 × 1012 2.3 × 1012 1.3 × 1012 1.4 × 1011 1.4 × 1010 1.5 × 109

90 5.3 × 1012 3.2 × 1012 1.9 × 1012 2.6 × 1011 3.5 × 1010 4.6 × 109

100 6.6 × 1012 4.2 × 1012 2.6 × 1012 4.4 × 1011 7.2 × 1010 1.2 × 1010

Particle size (Å) = 49 62 90 106 118

on small particles of dimension ∼100 Å at liquid nitrogen or lower temperatures when 1/τsp is
comparable to the Mossbauer timescale of 107–109 s−1 [28, 29]. This is generally in agreement
with the experiments on the systems described. The smaller size particles require much lower
temperatures for similar observations. For example, a particle of size 49 Å may show a
magnetic spectrum below 20 K but a particle of size 106 Å may show a magnetic spectrum up
to 50 K which extends up to 70 K for a particle of size 118 Å, etc. The model presented here
provides a credible quantum mechanical microscopic framework for the superparamagnetic
relaxation process in terms of exchange of energy between magnons and phonons within a
magnetic crystal, particularly at low temperatures when T � θD and θC . The present work
is expected to supplement the study of nano-particles through other physical techniques in
general.
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